Algorithmic systems are being adopted in a growing number of contexts, fueled by big data. These systems filter, sort, score, recommend, personalize, and otherwise shape human experience. increasingly making or informing decisions with major impact on access to, e.g. credit, insurance, healthcare, parole, social security, and immigration. Although these systems may bring myriad benefits, they also contain inherent risks, such as codifying and entrenching biases; reducing accountability, and hindering due process; they also increase the information asymmetry between individuals whose data feed into these systems and big players capable of inferring potentially relevant information.
ACM FAT* is an interdisciplinary conference dedicated to bringing together a diverse community of scholars from computer science, law, social sciences, and humanities to investigate and tackle issues in this emerging area. Research challenges are not limited to technological solutions regarding potential bias, but include the question of whether decisions should be outsourced to data- and code-driven computing systems.