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O Motivation

* Human Activity Recognition (HAR) involves collecting and processing personal behavior data for
training purposes, which has important consequences in terms of data privacy.

* As shown 1n the right figure, a motivating experiment indicates that the sensors that contribute the
most to recognizing certain activities strongly depend on the target individual.

O Core Idea

We introduced FedMAT, a novel federated learning framework for cross-individual sensor-based
activity recognition that effectively addresses the heterogeneity in sensory feature distribution across
different individuals. FedMAT works by extracting both shared and individual-specific features for
attention-based multi-modal sensor fusion in the setting of FL.

Figure 1: Importance of different features for 3 activities from 10
different individuals in ExtraSensory dataset. Saturation indicates
higher relevance. The images indicate that the features important for
recognizing any given activity strongly depend on the target user.

METHODOLOGY

O Architecture Overview
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* Gate Recurrent Unit (GRU) layers are used

to extract temporal relevance. Figure 2: Architecture of FedMAT. Structures of the central model and one of the client models are visualized.

O Federated Model Update O Attention-based Mask

We apply the attention-based mask to the feature representation layers, aiming at extracting individual-
specific information. The detailed structure of the attention-based mask 1s shown 1n Fig. 2, consisting of
multiple convolutional blocks for extracting task-specific features.

Specifically, we refer the shared features in the /-th layer of the shared network as €/, and the learned
attention mask in this layer for individual u as e!, . The task-specific features é! in this layer, are then
computed by element-wise multiplication of the attention masks with the shared features:

Algorithm 1 FedMAT.

Input: m individual-specific data sets {D,, }, one per client.
Output: central model ©., individual-specific models
{Wu}.
1: Server: Initialize central model ©,. < ©g
2: for round =1,2,... do
3: foreachu € {1,2,...,m} in parallel do
4: Client u: Get central model ©. from the server.
5 Client u: Train for n epochs using central model
©. together with local model W, and get locally
updated parameters ©,, and W,,.

et = Mask! ®p’. 4)

6 Client u: Push updated parameters O, to server. For the attention mask in layer j, the input the concatenation of the shared features p/ , and the task-
7:  end for specific features from the previous layer a; .

8:  Server: Update ©. according to Eq. 2

9: end for

10: return O and {Wy,..., W,,} Mask! = h(g([p; f(é,&l_l))])). (5)
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Figure 4: Evaluation of training epochs.




