
 

Grant Agreement No.: 823783 
Call: H2020-FETPROACT-2018-2020  
 
Topic: H2020-FETPROACT-2018-01 
Type of action: RIA 

 

 

 

 

D5.1  
WEN ET’S D IVERSITY-A WARE INTERACTIONS I  

 

Revision: v.0.1 
 

Work package WP5 

Task T5.1, T5.2, T5.3, T5.4 

Due date 30/04/2020 

Submission date 30/04/2020 

Deliverable lead CSIC 

Version 0.1 

Authors Nardine Osman (CSIC), Carles Sierra (CSIC), Ronald Chenu-Abente        
(UNITN), Qiang Shen (UNITN), Fausto Giunchiglia (UNITN), Bruno Rosell         
(CSIC), Athina Georgara (CSIC), Juan Antonio Rodriguez (CSIC), Thiago         
Freitas (CSIC), Marco Schorlemmer (CSIC)  

Reviewers Loizos Michael (OUC), Isidoros Perikos (OUC) 

 
Abstract WeNet’s main objective is achieving a diversity-aware, machine-mediated        

paradigm for social interactions. This deliverable focuses on WeNet’s         
diversity-aware interaction model that enables our online interactions while         

Ref. Ares(2020)2324073 - 30/04/2020



 WENET | D5.1: WeNet’s Diversity-Aware Interactions I  

ensuring they are privacy-compliant, diversity-aware, and in more general         
terms, fulfil our ethical requirements. The deliverable is divided into two           
main parts. The first focuses on the issue of mediating our online            
interactions in such a way that ensures certain properties are met. For this,             
a normative-based decentralised architecture is proposed. The second        
supports WeNet’s main objectives in helping out people by connecting          
them together, which is achieved by finding the right group of people for a              
given task. For this, a grouping mechanism is proposed. 

Keywords team formation, interaction model, norms, diversity, privacy, values  

 

Document Revision History 

Version Date Description of change List of contributor(s) 

V0.1 28/02/2020 1st version to be reviewed internally Nardine Osman (CSIC) 

V1.0 30/04/2020 Final version submitted Nardine Osman (CSIC) 

D ISCLAIMER 

The information, documentation and figures available in this deliverable are written by the             
“WeNet - The Internet of US” (WeNet) project’s consortium under EC grant agreement             
823783 and do not necessarily reflect the views of the European Commission. 

The European Commission is not liable for any use that may be made of the information                
contained herein. 

C OPYRIGHT NOTICE 

© 2019 - 2022 WeNet Consortium 

 

Project co-funded by the European Commission in the H2020 Programme 

Nature of the deliverable:* R 

Dissemination Level 

PU Public, fully open, e.g. web ✔ 

CL Classified, information as referred to in Commission Decision 2001/844/EC  

CO Confidential to the WeNet project and Commission Services  

 

* R: Document, report (excluding the periodic and final reports) 

  DEM: Demonstrator, pilot, prototype, plan designs  

  DEC: Websites, patents filing, press & media actions, videos, etc. 

  OTHER: Software, technical diagram, etc. 

  

© 2019-2022 WENET Page 2 of 29 

 



 WENET | D5.1: WeNet’s Diversity-Aware Interactions I  

 
 

EXECUTIVE SUMMARY 

WeNet’s main objective is achieving a diversity-aware, machine-mediated paradigm for          
social interactions. This deliverable focuses on WeNet’s diversity-aware interaction model          
that enables our online interactions while ensuring they are privacy-compliant,          
diversity-aware, and in more general terms, fulfil our ethical requirements.  

The deliverable is divided into two main parts. The first focuses on the issue of mediating our                 
online interactions in such a way that ensures certain properties are met (such as privacy).               
For this, we propose an architecture for the WeNet's interaction model that is based on               
normative systems. While normative systems have excelled at addressing issues such as            
coordination and cooperation, they have left a number of open challenges. The first is how to                
reconcile individual goals with community goals, without breaching the individual’s privacy.           
The evolution of norms driven by individuals’ behaviour or argumentation have helped take             
the individual into consideration. But what about individual norms that one is not willing to               
share with others? Then there are the ethical considerations that may arise from our              
interactions, such as, how do we deal with stereotypes, biases, or racism, or how to avoid the                 
abuse of community resources. Our proposal accounts for individual needs while respecting            
privacy and adhering to the community’s ethical code. We propose a decentralised            
architecture for normative systems that, along with the community norms, introduces           
individual’s requirements to help mediate the interaction between members. 

The second part of the deliverable focuses on finding the right group of people for a given                 
task. One of WeNet’s main objectives is helping out people by connecting them together. For               
example, if one needs help preparing for an exam, then WeNet is responsible for finding               
which group of students is best to work with, taking into consideration students' diverse              
backgrounds. Finding the right and effective group is not an easy task, and the importance of                
diversity in groups is well documented. This second line of work is concerned with developing               
a diversity-driven grouping mechanism that allocates student teams to tasks, initially focusing            
on diversity in competences. We note, however, that how to group people cannot be              
conducted in a generic way, independent of the goal of the team. As such, our team                
formation algorithms will be strongly influenced by the WeNet pilot scenarios and their             
defined goals, which are yet to be finalised. So while this deliverable proposes the scenario               
of allocating student teams to tasks, we note that as soon as the pilot scenarios are agreed                 
upon, the plan will be to revisit our proposed algorithm to take into consideration the               
particular requirements of the agreed upon pilot scenarios.  
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Chapter 1

Open Social Systems

This chapter proposes an architecture for the WeNet’s interaction model that is based on normative sys-

tems. While normative systems have excelled at addressing issues such as coordination and cooperation,

they have left a number of open challenges. The first is how to reconcile individual goals with community

goals, without breaching the individual’s privacy. The evolution of norms driven by individuals’ behaviour or

argumentation have helped take the individual into consideration. But what about individual norms that one

is not willing to share with others? Then there are the ethical considerations that may arise from our interac-

tions, such as, how do we deal with stereotypes, biases, or racism, or how to avoid the abuse of community

resources. This chapter is concerned with accounting for individual needs while respecting privacy and

adhering to the community’s ethical code. We propose a decentralised architecture for normative systems

that, along with the community norms, introduces individual’s requirements to help mediate the interaction

between members.

1.1 Introduction

Normative systems have attracted a lot of attention in the multi agent systems community as one approach

to maintain the autonomy of agents while ensuring community goals and aspirations are fulfilled. Norms

essentially specify the rules of interaction: what one can (or cannot) do, when, under what conditions, etc.

Normative systems copy how human societies function, and they can be compared to social norms that

govern society’s behaviour or organisational norms that mediate interactions in organisations [9].

While normative systems have excelled at addressing issues such as coordination and cooperation [2],

they have left a number of open challenges. The first is how to reconcile individual goals with community

goals, without breaching the individual’s privacy. A number of approaches have been studied to take the

individual into consideration, such as norm synthesis techniques that would help norms evolve based on

individuals’ behaviour [7], or norm evolution that would allow the individuals to reason about norms through

argumentation [8]. But what about individual norms that one is not willing to share with their fellow community

member? For example, imagine a community norm that states that a donation cannot be below 5e and an

individual norm that states that a donation cannot exceed 50e. Another open challenge are the ethical

considerations that may arise from our interactions, such as, how do we deal with stereotypes, biases, or

racism, or how to avoid the abuse of community resources, to name a few.

In other words, the question this chapter addresses is how can we make sure that an individual will have

their needs taken into consideration while we ensure their privacy is respected and the community’s ethical

code is not violated. To address these issues, this chapter proposes a decentralised architecture for nor-

mative systems that, along with the community norms, introduces individual’s requirements to help mediate

the interaction between members. Section 1.2 presents our proposal in brief, Section 1.3 introduces the no-

tation used in this chapter, Section 1.4 introduces the decentralised architecture addressing the challenges

discussed above, while Section 1.5 provides a motivating example, before concluding with Section 1.7.
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Figure 1.1: Community norms

1.2 Proposal

To address the issues presented above, we first say that in addition to community norms, there are also

individual norms that describe the individual’s rules of interaction with others.

Norms, as illustrated earlier, specify what actions are acceptable for that specific individual, who can

the individual interaction with, and under what circumstances. While normative systems have focused a

lot on the action, ‘what’ can one do, we highlight in this chapter the other crucial aspect of interactions:

‘who’ can one interact with. The ‘who’ aspect has been implicit until now, usually hidden under the ‘what’

action specification. In an increasingly hyperconnected world, we choose to make the ‘who’ more explicit

in our proposal. To achieve this, we require users to have profiles describing them, such as describing

their gender, their age, their relationships, etc. With such profiles, rules on who to interact with can then be

specified. For example, one individual norm can then say ‘only seek the support of female friends during

my breakup period’, while another can say ‘never ask my ex-husband for help’. As such, and in addition to

community norms and individual norms, the individual profile becomes another crucial element for mediating

our interactions.

Both the individual’s norms and profile may be divided into a private and shared part. In what follows, we

present the norms and the profiles in more detail.

1.2.1 Norms

As per the above we distinguish between community norms and individual norms.

• Community norms. These norms are the community’s agreed upon norms. Any action (represented

by a message exchange) in the peer-to-peer network must be coherent with them. We consider an

action acceptable by the community when it doesn’t violate any of the community’s norms.

We note community norms can be categorised into a number of groups (Figure 1.1). For example,

institutional norms can describe the rules of behaviour in the given community (following the concept

of electronic institutions [4]). Governance norms can describe the rules of who has the right to change

existing norms and how. Ethical norms can describe what is considered ethical and what actions

are deemed unethical, and hence, unacceptable in the community. Incentivising norms can help

provide incentives for community members to behave in a certain way, such as encouraging benevolent

behaviour, say to help maintaining the community and fulfilling its objectives.

One can even imagine re-using, adapting, or building on top of existing norms. For example, a new

social network may re-use the institutional norms of an existing social network and adapt them to their

community’s particular needs.

• Individual norms. These norms represent particular aspects of the relationship of the human with

her machine and with the community. For instance, a prohibition to pop-up a message during a siesta

unless coming from a relative. Or one can filter messages coming from people that they do not deem

trustworthy. As most individual norms are private, some ‘unethical’ behaviour may be codified at this

level and remain unnoticed, such as a private norm requiring to never show messages coming from

old men.

In general, individual norms may implement certain behaviour that may not be fully aligned with the

community values and norms. In cases of conflict between community norms and individual private
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ones, community norms prevail concerning actions within the community. For example, if commu-

nity norms prohibit discriminating against women, then an action like excluding females from a given

activity will be prohibited. However, individual private norms prevail when concerning actions local

to one’s machine. For instance, while community norms may prohibit discriminating against women,

one’s private norms can enforce requests coming from women to be suppressed (ignored).

We note that individual norms can further be divided into two parts: private norms and shared norms.

– Private norms are norms that are private and are never shared with other machines (e.g. ‘never

show messages coming from old men’). Their impact is restricted as other machines do not have

access to these norms.

– Shared norms are norms that travel with messages so that other people’s machines can take

them into consideration (e.g. when specifying ‘do not ask the help of people outside Barcelona’,

the receiving machine can check the location of its human, even if this data is private as this data

never leaves the machine and is not shared with others).

1.2.2 Profiles

Generally speaking we assume we have two types of profiles that we can intuitively describe as follows.

• Private profile. This is the set of features that are private to (and hence, accessible only by) the

human’s own machine. For instance, if gender("A",female) is part of Alice’s private profile this means

that Alice’s machine has permission to use Alice’s gender in the reasoning.

• Shared profile. This is a set of features that can be shared with (or made accessible to) others, both

the humans and their machines. There are several approaches, both centralised and decentralised,

that one can choose from for making information public. However, in this proposal, we suggest sharing

the public profile by communicating it to other machines on an as-needed basis.

Of course, humans decide what part of their profile is public and what part is kept private.

The notion of private profile is quite intuitive. We want to keep private what we do not want the others

to know. This issue of privacy has always been around but it has become of paramount importance with

the pervasive use of the Web and the Social Media. In the past we were protected for free by our space

and time limitations: it would take some time to go from place A to place B and this time would increase

with distance. The phone lifted some time barriers, but the propagation of information would still be limited

by the fact that we were able to choose who to interact with and, in any case, the communication would

only happen in pairs. Television lifted other barriers, allowing for zero time one-to-many communication, but

still information was very much verified and under control and in many cases regulated by law. The Social

Media have lifted the last barrier: now everybody can talk with everybody and say whatever they prefer with

basically no limitations (with the first limitations being established by the most recent legislation, for instance,

GDPR in Europe).

The social media have made it possible to replicate and hugely expand what has always been the case

in the real world. Now anybody can share information with anybody, virtually the entire world population, in

zero time and no space constraints. This motivates the focus on privacy and hence the need for a private

profile.

But this is only part of the story. First of all, the notion of privacy is not an absolute notion. There

is information that I may be willing to share with my family but not with my friends and even less with my

enemies. For example people are usually very happy to share information about the location of their children

in a certain moment of time, for instance the fact that they go to a school with a certain address and that

lectures will end at 1pm, with a person with a car that maybe has a child who goes to the same school. But

they would never be willing to share this information with a person they do not fully trust. In social relations,

the notion of privacy is fully contextual in the sense that it depends on the current situation and also in the

objectives that one wants to achieve.

The contextuality, and therefore non-absoluteness, of privacy brings up the key observation which un-

derlies the need for both a public and a private profile. To provide another example which integrates the one

about the child who needs to be picked up from school, suppose I have a certain medical condition, e.g.,
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diabetes. This is sensitive information, namely information with many more constraints for its circulation. In

general, most people would not talk about their disease, but, for instance, a person with diabetes, if too low

in her level of sugar in the blood, would be very happy to let others know about this. And not only of the

need for sugar but also of the fact that the reason is diabetes, as this would increase the urgency of the

intervention. In social relations there is always a tension between privacy and transparency. In almost any

interaction with other people we trade-off some privacy (about us, about our family, friends, ..., anybody) as

a key enabler for obtaining information, support, information from others.

The notion of public profile captures exactly this need of transparency, meaning by this the sharing

information as key to enabling social interactions. Clearly, the public profile is contextual, where the person

we interact with is a crucial component of the relevant context, and mostly dynamic. There is in fact very

little information, if any, that we are willing to always share with others; maybe our name, but also in this case

it is easy to think of exceptions. Furthermore the public profile, like the private profile, will change in time

because of multiple reasons, e.g., change of one’s job or of the place where one lives. The contextuality

and dynamicity of the public profile will require its continuous update and revision (issues addressed by the

WeNet platform). This consists of a process which will be enforced by the local peer, as driven by its user,

and which will consist of performing a set of abstraction operations [6] on the private profile.

1.3 Notation

We first present, in this Section, the notation used in the remainder of this chapter. We say let CN describe

the set of community norms, PrR and ShR describe the sets of private and shared individual norms, respec-

tively, and PrP and ShP describe the private and share profiles, respectively. We view a profile as a set of

features. To specify which agent does a set of norms or profile describe, we use the sub index of that agent.

For example, PrRA describe’s A’s private norms whereas ShPB describes B’s shared profile.

We say a profile is a set of features, and we specify features as propositions. For example, we say

gender(“A”,female) to state that A’s gender is female and loc(“A”,barcelona) to state that A’s location is in

Barcelona. As for norms, we specify these as “if then” statements that talk about actions (similar to the

rule-based norms of [5]), and we use the deontic operators O and F to describe obligations and prohibitions,

accordingly. For example, F (display(“A”,M)) states that it is forbidden to display the message M to A.

1.4 Architecture and associated operational model

In Figure 1.2, the schema of the peer-to-peer architecture for our proposed normative system is presented.

Each user has a machine, that may run all or some of its computations on a remote server (depending on

the complexity of the norms and their computational requirements). Each user interacts with its machine

through a user interface.

As illustrated earlier, each user specifies their profile and individual norms. The profile is divided into

private (PrP) and shared (ShP) parts, and the norms into private (PrR) and Shared (ShR) parts.

The norm engine at each machine will have both a reactive and proactive behaviour.

• Reactive Behaviour. This allows the norm engine to react to messages received (usually representing

the actions being performed), and there are two types of messages that a machine can receive:

– A message from the user interface. When a user performs an action, it is translated into a

message that is sent to the machine through the user interface. The message includes the

shared norms and a copy of the sender’s shared profile. Upon the receipt of such a message,

the norm engine needs to first verify that the message does not violate any of the norms, this

includes the community norms and the sender’s individual norms (both private and shared). A

conflict resolution mechanism should address any conflicting norms that may arise. If the action

violates any of those norms, an error message is sent back to the user. However, if the action

obeys the norms, then the norm engine needs to decide what to do next, usually translated into

sending messages to other peers. This decision follows from the community and individual norms

(both private and shared), and takes the user’s profile (both public and shared) into account as

needed.
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Figure 1.2: Basic (distributed) architecture

– A message from another machine. As in the previous case, the norm engine needs to first

verify that the message does not violate any of the community norms. This re-checking upon

receipt ensures that the sender’s norm engine has not been manipulated to cheat. If the message

violates any of the community norms, then it may either be discarded, or if the community norms

require sanctioning, then the appropriate sanctions should be executed.

1

However, if the action obeys the community norms, then the norm engine needs to decide what

to do next, which is usually translated into sending messages to other peers and/or sending

messages to the user interface. This decision takes into consideration the community norms, the

norms attached to the message, and the individual private and shared norms. This ensures that

the machine abides with its human’s private norms without leaking any of their private norms and

profile.

• Proactive Behaviour. This allows the norm engine to proactively perform actions as required by the

norms. In other words, the norm engine does not simply react to actions performed by users, by can

1

Note that in this document, we do not get into the details of where are norm engines physically located (locally or not), as this is an

issue to be decided on the implementation level (which is outside the scope of this paper). Nor do we get into the discussion of how

to ensure the security of the norm engine and prevent its manipulation. But it is worth noting that traditional approaches of distributed

systems can be investigated here to address manipulation, such as following the blockchain approach.
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proactively take an action itself, and as required by the norms. For example, incentivising norms might

remind a user to complete their profile, if this has been neglected for some time, or remind the user

of how much their contribution to their community is valued, if they haven’t been active lately. To be

proactive, a machine will require access to the community norms and individual private norms, as well

as its human’s private and public profile.

1.5 Motivating Example

In this example, imagine having four people involved: Alice (A), Bob (B), Carol (C), and Dave (D). Say

Bob, Carol and Dave are on Alice’s contact list, and Bob is on Carol’s contact list. The community norms

(CN) specify how a help request is propagated in the social network. They state that every time a machine

receives a help request, it needs to decide whether it displays it to its user (Lines 32–35, Figure 1.3), and

whether it needs to forward it and to whom (Lines 24–31, Figure 1.3). We note that the person making

the request will decide the maximum number of hops accepted when looking for volunteers (Hops) and the

minimum trustworthiness required (Trust). As these are specified for a given task, they are sent along with

the help request message (Line 38, Figure 1.3).

As for individual norms, imagine Carol has a private norm that says ignore help requests from females

(i.e. do not display such requests, as show in Lines 13–17, Figure 1.3). Alice, on the other hand, has a

private norm and a shared one. The private one specifies that only those who are close by (in Barcelona)

get to see her help requests (Lines 10–12, Figure 1.3). The shared one specifies that none of her requests

may be displayed to Bob (Lines 19–22, Figure 1.3). As Bob is her ex-husband, she prefers that Bob does

not see her requests, though she is happy for his machine to still receive her requests as she is interested

in using his social network. Hence, she only prohibits the display of the message to Bob.

Now concerning people’s profiles, some information such as gender, location, or trust in others may be

kept private (Lines 1–4, Figure 1.3), or made public (Lines 6–8, Figure 1.3). For example, Alice’s private

profile specifies her trust in her contacts: in this case, ‘low’ for Bob and ‘high’ for Carol and Dave. Similarly,

Carol’s private profile specifies her trust in her contact Bob as ‘high’ and her current location as being in

London. Bob, Dave and Alice are happy to make share their gender and location with others through their

shared profiles.

Now given these profiles and norms, imagine that Alice is running late at work and she needs someone

to pick up her child from school (message M). She accepts friends of friends (Hops=2, for connection level 2),

but is looking for trustworthy volunteers only (Trust="high"), as illustrated in Line 38, Figure 1.3. For these

norms to be enforced by other machines, Alice shares these norms along with her other shared norms and

profiles by attaching them to the help request (M), resulting in the message, MSG.

As soon as the help request is sent by Alice, the norm interpreter at her machine will check whether

the message complies with the community norms (CN), in which case it does. The interpreter then needs

to decide what are the actions that this message entails, taking into consideration Alice’s profile (private

and shared), her norms (private and shared), and the community norms. According to the community norm

on Lines 24–31, the interpreter decides to forward the help request to Carol and Dave, as they satisfy the

requested hops and trustworthiness constraints (the trustworthiness of Bob, on the other hand, is low).

Upon receiving the message, Dave’s machine now needs to check whether the message applies with

the community norms, which it does. It then needs to decide what are the resulting actions of receiving this

message, taking into consideration Dave’s profile and norms (both private and shared), the norms attached

to the message (that is, Alice’s shared norms), and the community norms. According to the community

norm on Lines 32–35, the request is then displayed to Dave, despite the fact that Alice forbids it in its

private norm. This is because Alice’s private norm is private and cannot be taken into consideration by other

people’s machines.

Upon receiving this message, again, Carol’s machine needs to check whether the message applies with

the community norms, which it does. After that, it needs to decide what are the resulting actions of receiving

this message, taking into consideration Carol’s profile (private and shared), her norms (private and shared),

the norms attached to the message (that is, Alice’s shared norms), and the community norms. In this case,

and according to Carol’s private norm on Lines 13–17, the help request is not displayed on Carol’s mobile

as it comes from a female. However, the help request is forwarded to Bob, according to the community norm

© 2019–2022 WENET Page 10 of 29
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1 PrPA = { trust("A","B",low) ;
2 trust("A","C",high) ;
3 trust("A","D",high) }
4 PrPC = { trust("C","B",high) ; loc("C",london) }
5

6 ShPA = { gender("A",female) ; loc("A",barcelona)}
7 ShPB = { gender("B",male) ; loc("B",barcelona) }
8 ShPD = { gender("D",male) ; loc("D", rome) }
9

10 PrRA = { IF ¬loc(X,barcelona) ^ requester(M)="A" THEN
11 F(display(X,M))
12 END IF }
13 PrRC = { IF rcv help rqst(Sndr,"C",Trust,Hops,MSG) ^
14 gender(Sndr)=female ^
15 MSG=M+ShRM+ShRSndr+ShPSndr THEN
16 F(display("C",M))
17 END IF}
18

19 ShRA = { IF rcv help rqst(Sndr,"B",Trust,Hops,MSG) ^
20 MSG=M+ShRM+ShRSndr+ShPSndr THEN
21 F(display("B",M))
22 END IF }
23

24 CN = {IF rcv help rqst(Sndr,Rcvr,Trust,Hops,MSG) THEN
25 FOR ALL X2Rcvr.Contacts
26 IF trust(Rcvr,X,Y) ^
27 Y�Trust ^ Hops>0 THEN
28 O(snd help rqst(Rcvr,X,Trust,Hops-1,MSG))
29 END IF
30 END FOR
31 END IF ;
32 IF rcv help rqst(Sndr,Rcvr,Trust,Hops,MSG) ^
33 type(Sndr)=machine ^ MSG=M+ShRM+ShRSndr+ShPSndr THEN
34 O(display(Rcvr,M))
35 END IF }
36

37 M = "Can you pick up my son from school at 5pm?"
38 ShRM = { O(snd help rqst("A",machine("A"),"high",2,MSGM)) }

Figure 1.3: Motivating example: profiles and norms

at Lines 24–31. Note that while Alice’s trust in Bob was low, her trust in Carol is high, and Carol’s trust in

Bob is also high, allowing the message to be forwarded to Bob through Carol.

Upon receiving the message, Bob’s machine again checks its adherence to community norms. Then, as

above, it needs to decide what are the resulting actions of receiving this message, taking into consideration

Bob’s profile (private and shared), his norms (private and shared), the norms attached to the message (that

is, Alice’s shared norms), and the community norms. In this case, and according to Alice’s shared norm on

Lines 19–22, the help request is not displayed on Bob’s mobile as Alice forbids it.

This example illustrates how our proposed system ensures the interaction between people adheres to

both community norms and individual ones without jeopardizing people’s privacy. It also illustrates the impact

of private and shared information. For instance, private norms are better suited to control local behaviour,

whereas shared norms are better suited for controlling the behaviour of other machines.

1.6 Beyond the Proposed Architecture

Our architecture for open social systems provides the foundations for the WeNet interaction model. Ongoing

work that builds on this interaction model has focused (up until now) on two main issues. First, how to specify

the different WeNet pilot scenarios in this architecture, and second, how to address the issue of alignment

in our WeNet interactions. In what follows we present the progress of this ongoing work.
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1.6.1 Specifying Scenarios

To specify a WeNet scenario, say a scenario where people use the WeNet system to find fellow students

who can join them for dinner, we specify the rules of interaction for that scenario. Rules of interaction may

be thought of rules specifying who can do what, when, and under what condition. For example, who can

organise a dinner, who can volunteer to attend, how does the system look for volunteers, and so on. These

rules constitute the community norms, and as such, WeNet scenarios are specified through community

norms. Naturally, additional individual norms or even task related norms can be appended, such as “I can

only accept a maximum of 5 attendees at my place”.

To specify community norms, a language for norms is needed. We suggest to build here on the traditional

approach of using deontic logic for specifying. Deontic logic is the logic of duties, and it deals with concepts

like permissions, prohibitions, and obligations, which help specify who can do what, under what conditions,

and so on. In hardware systems and networks, deontic-based policy languages have been used widely in

hardware systems and networks for security reasons, trust negotiation, access control, authorisation, and

so on [10, 3]. In multiagent systems, several deontic based formal logics have been proposed for helping

coordinate collective activities, and coordination is mainly achieved through procedural norms [1, 11].

In this project, we choose to follow the deontic approach, though we decide to simplify the syntax of the

normative language by specifying norms through “if ... then ...” statements. We believe such statements

are expressive enough for our scenarios (the final WeNet scenarios, currently being finalised, will either

confirm this or require minor modifications to our proposed language). For example, a rule can say “If

someone cancels their request then volunteers should be informed”. We note, however, given the above

architecture and its requirement for a decentralised approach, any change in state needs to be saved locally

(e.g. if I am no longer a volunteer). This change in state is represented via the Belief-Desire-Intention (BDI)

model, a model used in programming intelligent agents to help keep track of the agents’ beliefs and desires

and help plan their actions accordingly (through intentions).

As such, “if then” rules should be specified with this requirement in mind: they should specify the neces-

sary changes in state. For example, the above norm can be specified as:

if action(cancel(R)) then believe(request(R,cancelled))

if believe(request(R,cancelled)) then msg(SV,request(R,cancelled))

In other words, if the user performs the action of cancelling their request (action(cancel(R))), then locally,

the user updates the status of the request accordingly (believe(request(R,cancelled))), and this results

in informing the selected volunteer of this change (msg(SV,request(R,cancelled))).

An initial proposal for the norm language is presented below. The syntax essentially states that norms

are composed of a condition part and a consequence part. Both parts can be complex, constructed by using

conjunctions, disjunctions, and negations of conditions/consequences. A simple condition can then either

represent a past event or action (e.g. a deadline is reached, the user presses the cancel button, the user

receives a message asking if they are interested in an activity), or a change in the BDI state (e.g. user now

beliefs an activity is cancelled). Similarly, simple consequences can represent an action to be performed

(e.g. inform the selected volunteer of my cancellation), or a BDI state change to be applied (e.g. I now belief

the task is cancelled).

Norm :: if Condition then Consequence

Condition :: Condition and Condition |

Condition or Condition |

not Condition |

Simple_Condition

Consequence :: Consequence and Consequence |

Consequence or Consequence |

not Consequence |

SimpleConsequence

Figure 1.4: Norm syntax
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While the WeNet pilot scenarios are getting finalised, a simple scenario where people can use WeNet

to make requests and volunteer is currently being implemented with the above syntax as an exercise to test

the expressiveness of the language.

1.6.2 Interaction Alignment

Given that interactions are mediated via norms, this line of work focuses on the issue of norm align-

ment due to misunderstandings. For example, say we have a scenario where people can look for vol-

unteers to join them in some activity (such as running, football, or dinner). And say there is a commu-

nity norm that states that users must be “punctual” when attending an activity. The norm is specified as:

If chosen volunteer(X, Activity) Then obliged(be punctual(X, Activity)), which essentially states that

if a user X is the chosen volunteer for a given activity (Activity), then X must be punctual for that activity.

However, understanding punctuality is very subjective. One person might accept their volunteer to be 10 min-

utes late, while another might believe this is rude behaviour and rate the volunteer poorly. Problems will es-

sentially arise when there is an agreement that many users are not being punctual. Of course, there may be

different reasons for people not abiding by the punctuality norm. For example, the majority may be students

with part-time jobs who are usually tight on time and hence are frequently running late. But in some cases,

a norm is not adhered to due to our diverse understanding of the norm. So what is very late for one person

might be considered being on time for another. When problems are detected due to such misunderstandings

—namely, people are not abiding by the punctuality norm due to a diverse understanding of “punctuality”—

then this implies that the norm needs to be modified to address the problem at hand. For example, the norm

can be changed to explicitly note that 15 minutes late is not acceptable in this community. This is essen-

tially clarifying the semantics for punctuality for community users. For instance, the new norm can state that:

If chosen volunteer(X, Activity) ^ activity time(Activity, T) ^ activity location(Activity, L)
Then obliged(arrive before(X, L, T+ 5)). This essentially states that the user X must arrive to the location

of the activity L at most 5 minutes late (T+ 5), where T is the time of the activity.

In summary, detecting problems that may arise due to our diverse understandings and addressing these

problems by adapting the norms as an approach to help aligning our understanding is the objective of this

ongoing work. But how do we detect that people are not abiding by the norms and a change is needed?

Two different approaches may be applied here: either depend on the users to explicitly flag lateness, or

have the system automatically detect late arrivals (say by using geo-location). Although the more urgent

question is how to learn which norm might be best to apply. Here, we have three different approached to

consider. First, we may consider Reinforcement Learning (RL). Starting with a pre-defined set of rules, we

could apply RL to simulate interactions and learn what the expected behaviour is in such situations. Here,

we may also consider providing arguments to improve the RL process. Besides, the arguments could also

be used to explain why certain decision was taken, thus dealing with the “black-box” problem of machine

learning approaches. Second, Inverse Reinforcement Learning (IRL) may be considered. This approach

uses the same idea of using interactions to learn, but in this case the system observes real interactions

and then infers a reward function. Third, Supervised Learning with Arguments may also be considered.

Using supervised learning, one could use the arguments to support the rules that the system is learning.

In this case, all learned rules must be explained by the given arguments. To learn, the system receives the

examples plus the arguments that explain those examples. We are currently in the process of assessing the

pros and cons of the different approaches in order to make an informed decision on how to move forward.

1.7 Conclusion

This chapter has proposed a decentralised architecture for normative systems that introduces individual

norms, while ensuring the privacy of people. One aspect that has been overlooked in this chapter and left

for future work is the conflict resolution mechanism. Having people specify their own norms will probably

result in conflicting rules, and a mechanism will be needed to address such conflicts.

Our ongoing work is implementing the different parts of the WeNet platform according to the architecture

presented in this paper. The WeNet platform introduces different types of norms (private and shared ones)

and different types of profiles (private and shared). We have also just commenced our work on implement-
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ing the norm engine that reacts to any action performed, ensuring the norms (both the individual and the

community norms) are followed. Also, we are integrating the platform with an extended version of iLog [12]

that automatically learns people’s profiles from their online activity, and we note that it is the profiles that will

provide the diversity information about groups of users.

As illustrated in our discussion of community norms, these norms can be used to specify the rules of

interaction in a community, but also to introduce more specialised rules, such as rules specifying what is

considered ethical and unethical, or rules specifying how to motivate people to act in a certain way. Future

work will be experimenting with these specialised different, focusing on ethics and incentives.
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Chapter 2

TAIP: An Anytime Algorithm for

Allocating Student Teams to Tasks

One of the main tasks of WeNet is helping out people by connecting them together. For example, if I need
help preparing for an exam, then WeNet is responsible for finding which group of students is best to work
with, taking into consideration students’ diverse backgrounds. Finding the right and effective group is not
an easy task. This chapter presents a grouping mechanism that allocates student teams to tasks. As the
WeNet use cases and their relevant diversity dimensions are still under development, we commence our
work on team formation by focusing on competences obtained from Fondazione Bruno Kessler. When the
WeNet diversity dimensions evolve, our grouping mechanism will be adapted to the new dimensions.

In this chapter, we focus on scenarios that require teamwork, where we usually have at hand a variety of
specific tasks, for which we need to form a team in order to carry out each one. Here we target the problem of
matching teams with tasks within the context of education, and specifically in the context of forming teams of
students and allocating them to internship programs. First we provide a formalization of the proposed team
allocation problem, and show the computational hardness of solving it optimally. Thereafter, we propose
TAIP, a heuristic algorithm that generates an initial team allocation which later on attempts to improve in an
iterative process. Moreover, we conduct a systematic evaluation to show that TAIP reaches optimality, and
outperforms CPLEX in terms of time.

We note, however, that team formation strongly depends on the goal of the team. How to group people
cannot be conducted in a generic way, independent of the goal of the team. As such, and because the
exact WeNet pilot scenarios are still under development, this documents proposes the scenario of allocating
student teams to tasks. Of course, the resulting algorithm is defined in such a way that it addresses the
requirements of our selected scenario. As the WeNet pilots get finalised, the proposed algorithm will be
revisited and adapted to the different WeNet pilots.

2.1 Introduction

In the context of education, it is increasingly common that students spend some time doing practical work
in a company as part of their curriculum. This work is sometimes remunerated: companies benefit from
this program as they get motivated students that will work for reduced wages, and students benefit from
a first contact with the labour market. It has been found that the employability of students at the end of
their studies increases thanks to these internships. Nowadays, education authorities match students with
companies mostly by hand. This chapter formalises this matching process as a combinatorial optimization
problem, proposes some heuristic algorithms and studies their computational complexity.

Team formation with respect to skills/expertise is a well studied topic of interest within the AI and MAS
community [4]. [2] tackle the problem of team formation considering skills, communication costs, and tasks
that progressively arrive in time. In the same direction, [8] propose a heuristic algorithm for forming one
team of experts for a specific task. [7] propose several heuristic algorithms for forming a single robust
team in order to compete a given set of tasks. The authors in [5] target the problem of partitioning a group

© 2019–2022 WENET Page 16 of 29



WENET | D5.1: WeNet’s Diversity-Aware Interactions I

of individuals into equal-sized teams so that each one will resolve the same task. Here we consider the
problem of allocating individuals into teams of different sizes in order to resolve different tasks. In fact, our
problem can be viewed as a generalization of [5].

In this work, we present and formalise an actual-world problem, the so-called Team Allocation for Intern-
ship Programs (TAIPP). We characterise the complexity of the TAIPP and the search space that an algorithm
that solves it must cope with. We propose how to encode the TAIPP as a linear program so that it can be
solved by a general purpose LP solver. Furthermore, we propose a novel, anytime heuristic algorithm that
exploits the structure of the TAIPP. As we will show, our proposed algorithm outperforms the general pur-
pose optimizer IBM CPLEX in terms of time: it always reaches the optimal solution at least 55% faster than
CPLEX, and reaches a quality of 80% in less than 20% of the time we need to construct the input for CPLEX.

As such, in what follows, in Sec 2.2 we formally describe the TAIPP, provide formal definitions of the
problem’s components, and study the complexity of the problem. In Sec 2.3 we provide the encoding for
a linear program solver. In Sec 2.4 we propose our heuristic algorithm; while in Sec 2.5 we conduct a
systematic evaluation and show the effectiveness of our algorithm.

2.2 Problem Formalization

In this section we present the individual components of the problem, discuss their intuition, and provide
formal definitions. We begin with the formalization of internship programs and students, along with a thor-
ough discussion on the essential notion of competencies. Then we proceed on presenting our notion of
competence coverage, and show how to compute it.

2.2.1 Basic elements of the allocation problem

An internship program is characterised by a set of requirements on student competencies and team size
constraints. For instance, think of an internship program in a computer tech company: there are 4 com-
petence requirements (a) machine learning principles, (b) coding in python, (c) web development, and (d)
fluency in Spanish language, while the required team size is 3 members; as such, for this program we need
a team of three students that as a team possesses the four required competencies.

In general we can have a large variety of other constraints, such as temporal or spatial constraints, i.e.,
when and where the internship can be realised. However, within the scope of this chapter, we only focus
on team size constraints. The required competencies are often accompanied by their level and importance.
Formally, an internship program p is a tuple hC, l, w,mi, where C is the set of required competencies,
l : C ! R+ [ {0} is a required competence level function, w : C ! (0, 1] is a function that weighs the
importance of competences, and m 2 N+ is the team size required. The set of all internship programs is
denoted with P , with |P | = M .

A student is characterised by their competencies, and their competence levels. Formally, a student s is
represented as a tuple hC, li, where C is the set of already acquired competencies, and l : C ! R+ [ {0} is
a competence level function, and hence l(c) is the student’s competence level for competence c. The set of
all students is denoted with S, with |S| = N . Given p 2 P , we denote the set of all size-compliant teams for
p as K

p

= {K ✓ S : |K| = m
p

}.1
But size is not enough, we need that the members of a team are suitable for the competencies requested

by a company. We assume that there is a predefined ontology that provides a fixed and finite set of com-
petencies C along with relations among them. We further assume that the ontology is a tree graph, where
children denote more specific competencies than those of their parents. Formally, an ontology is a tuple
o = hC,Ei with C being the competencies-nodes and E the edges. The metric over ontologies that we will
use next is the semantic similarity. The semantic similarity is given by

sim(c1, c2) =

(

1, if l = 0

e��l

e

h�e

�h

e

h+e

�h , otherwise
(2.1)

1Note: we use the subscript s to refer to the set of competencies, competence level function, etc. of a student s 2 S, and the
subscript p to refer to the same elements of the internship’s p 2 P .
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where l is the shortest path in the tree between c1 and c2, h is the depth of the deepest competence
subsuming both c1 and c2, and ,� 2 [1, 2] are parameters regulating the influence of l and h to the similarity
metric. This is a variation of the metric introduced in [9], which guarantees the reflexive property of similarity,
that is, a node is maximally similar to itself, independently of its depth. In other words, nodes at zero distance
(l = 0) have maximum similarity. Similarly to [12], the semantic similarity between two competence lies in
[0, 1].

2.2.2 Computing competence coverage for students and teams

In order to evaluate how well a student fits with an internship we need some notion of coverage for each
competence required by an internship by the actual competencies of a student. Thus, we define the student
coverage of competence c by a set of competencies A ✓ C as cvg(c, A) = max

c

02A

{sim(c, c0)}.
And then, naturally, given a program p with required competencies C

p

and a student s with acquired
competencies C

s

the competence coverage of program p by student s is:

cvg(s, C
p

) =

Y

c2Cp

cvg(c, C
s

) =

Y

c2Cp

max

c

02Cs

{sim(c, c0)} (2.2)

Moving now from a single student s 2 S to a team of students K ✓ S, we need first to solve a competence
assignment problem. That is, we need to assign to each student s 2 K a subset of competencies of C

p

,
and assume that student s is responsible for (in charge of) their assigned competencies. According to [5]
we have that:

Definition 1 (Competence Assignment Function (CAF)). Given a program p 2 P , and a team of students
K ✓ S, a competence assignment ⌘K

p

is a function ⌘K
p

: K ! 2

Cp , satisfying C
p

=

S

s2K

⌘K
p

(s).

The set of competence assignments functions for program p and team K is noted by ⇥

K

p

. The inverse
function ⌘K �1

p

: C
p

! 2

K provides us with the set of students in K that are assigned to competence c 2 C
p

.
However, not all competence assignments are equally accepted. For example, consider a program p

(with C
p

= {c1, c2, c3, c4, c5}), and a team K = {s1, s2, s3}. An assignment ⌘K
p

such that ⌘K
p

(s1) = C
p

and
⌘K
p

(s2) = ⌘K
p

(s3) = ; seems to be unfair—assigning all competencies as student s1’s responsibility—,while
assignment ⌘̃K

p

such that ⌘̃K
p

(s1) = {c1, c3}, ⌘̃K
p

(s2) = {c2, c5} and ⌘̃K
p

(s3) = {c4} is more fair, in terms of
allocating responsibilities. In the setting of internship programs, we prefer assignments such that all students
are actively participating, i.e., assignments such that ⌘K

p

(s) 6= ; for each student s (the so-called inclusive
assignments in [3]). At the same time, we would prefer not to ‘overload’ a few students with excessive
responsibilities, but selecting fair competence assignments.2 This is captured by the following definition:

Definition 2 (Fair Competence Assignment Function (FCAF)). Given a program p, and a team of students
K ✓ S, a fair competence assignment ⌘K

p

is a function ⌘K
p

: K ! 2

Cp , satisfying C
p

=

S

s2K

⌘K
p

(s),
1  |⌘K

p

(s)|  d |Cp|
|K| e 8s 2 K, and 1  |⌘K �1

p

(c)|  b |K|
|Cp|c+ 1.

Now, given a competence assignment ⌘K
p

, we define the competence proximity of a student s wrt a
program p. To do so we take into consideration the importance of each competence and the students
coverage of the assigned competencies. In the competence proximity we want to encode the following
scenarios:

• the competence proximity should be as high as possible when the coverage of a competence by a
student is maximum;

• the competence proximity should be as high as possible when the competence is not important;

• the competence proximity should be as low as possible when the coverage of a competence by all
students is minimum.

For a competence c 2 C
p

and a student s, we can visualise the above properties in the truth table in
Table 2.1. If we think cvg(c, C

s

) and w
p

(c), the importance of competence c in program p, as Boolean
2We remind the reader that these requirements are particular to our scenario of matching students to tasks. When the WeNet pilots’

scenarios get finalised and their diversity dimensions identified, we will adapt our algorithm to any new requirements that might pop up.
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cvg(#) \ w(!) 0 (0, 1) 1

0 1 1 1

(0, 1) 1 ⇠ cvg

1 1 ⇠ (1� w) 0

Table 2.1: Competence proximity truth table; cvg stands for cvg(c, Cs), and w for wp(c).

variables, we can interpret this table as a logical formula

w
p

(c)) cvg(c, C
s

) ⌘
�

1� w
p

(c)
�

_ cvg(c, C
s

)

However, cvg(c, C
s

) and w
p

(c) are continuous variables in [0, 1], so we model the ‘or’ condition of the
above logical formula as the ‘maximum’ between the two variables. As such, we define the competence
proximity of a student for an internship program as:

Definition 3 (Student’s Competence Proximity). Given a student s 2 S, an internship program p 2 P , and a
competence assignment ⌘

p

, the competence proximity of s for p with respect to ⌘
p

is:

cp(s, p, ⌘
p

) =

Y

c2⌘p(s)

max

��

1� w
p

(c)
�

, cvg(c, C
s

)

 

. (2.3)

Moving to the competence proximity of a team of students K ✓ S for program p, we use the Nash product
of the competence proximity of the individuals in K for p, with respect to some FCAF ⌘

p

. The Nash product
assigns a larger value to teams where all students equally contribute to their program, rather than to teams
where some students have a small contribution.

Definition 4 (Team’s Competence Proximity). Give a team K a program p 2 P , and a competence assign-
ment ⌘

p

, the competence proximity of team K for program p is:

cp(K, p, ⌘K
p

) =

Y

s2K

cp(s, p, ⌘Kp ). (2.4)

For a team K and a program p its competence proximity varies depending on the competence assign-
ment at hand. We define the best competence assignment as the fair one (Definition 2) that maximizes the
competence proximity:

⌘K ⇤
p

= argmax

⌘

K
p 2⇥K

p

{cp
�

K, p, ⌘K
p

�

}

= argmax

⌘

K
p 2⇥K

p

Y

s2K

cp(s, p, ⌘Kp )

= argmax

⌘

K
p 2⇥K

p

Y

c2⌘p(s)

max

��

1� w
p

(c)
�

, cvg(c, C
s

)

 

Finding the best competence assignment is optimization problem itself. Even though the above is not a
linear optimization problem, it can be easily linearized by considering the logarithm of cp

�

·
�

:

⌘K ⇤
p

= argmax

⌘

K
p 2⇥K

p

{cp
�

K, p, ⌘K
p

�

} ⌘ argmax

⌘

K
p 2⇥K

p

{log{cp
�

K, p, ⌘K
p

�

}}

= argmax

⌘

K
p 2⇥K

p

log

n

Y

s2K

cp(s, p, ⌘Kp )
o

= argmax

⌘

K
p 2⇥K

p

X

s2K

log

�

cp(s, p, ⌘Kp )
 

2.2.3 The team allocation problem as an optimisation problem

Finding a good allocation of students to a collection of internship programs is yet another optimization
problem that tries to maximize the overall competence proximity of all teams for their assigned internship
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program. That is, for a single program p, the best candidate team is the one that maximizes the competence
proximity: K⇤

= argmax

K2Kp
cp(K, p). K⇤ is the best candidate when a single program is at hand. For

a set of programs P , with |P | > 1, we need to maximize the competence proximity of all candidate teams
with their corresponding programs. Suppose we have a team assignment function g : P ! 2

S , which maps
each p 2 P with a team of students K 2 K

p

. We assume that for two programs p1 and p2 it holds that
p1 = p2 , g(p1) = g(p2). In the setting of matching internship programs with teams of students we should
consider only team assignment functions g such that g assigns each student to at most one program.3 As
such, we can define feasible team assignment functions:

Definition 5 (Feasible Team Assignment Functions (FTAF)). Given a set of programs P and a set of students
S, a feasible team assignment function g 2 G is such that for each pair of programs p1, p2 2 P with p1 6= p2,
it holds that g(p1) \ g(p2) = ;; and for all p 2 P it holds that |g(p)| = m

p

.

The family of all feasible team assignments is denoted with Gfeasible. Now we are ready to formalise our
team allocation problem as follows:

Definition 6 (Team Allocation for Internship Programs Problem (TAIPP)). Give a set of internship programs
P , and a set of students S, the team allocation for internship programs problem is to select the team assign-
ment function g⇤ 2 G that maximizes the overall competence proximity:

g⇤ = argmax

g2Gfeasible

Y

p2P

cp

�

g(p), p, ⌘g(p) ⇤
p

�

(2.7)

The following result establishes that the TAIPP is NP � complete by reduction to a well-known problem
in the MAS literature.

Theorem 1. The TAIPP, with more than one program at hand, is NP � complete.

Proof. The problem is in NP since we can decide whether a given solution is feasible in polynomial time
(O(

P

p2P

m
p

)). We show that the problem is NP � complete by using a reduction from Single Unit Auctions
with XOR Constraints and Free Disposals (referred to as BCAWDP with XOR Constraints) which is shown
to be NP � complete [13]. In the BCAWDP with XOR Constraints, the auctioneer has N items to sell, the
bidders place their bids B

i

= hb
i

, b
i

i with b
i

be a subset of items and b
i

the price. Between two bids can
exist an XOR constraint–not necessarily to every pair of bids. The auctioneer allows free disposals, i.e.,
items can remain unsold. Given an instance of BCAWDP with XOR Constraints, we construct an instance
of student-teams allocation to internship programs problem as follows: “For each item i we create a student
s
i

. For each program p
j

of size m
pj we create

� |S|
mpj

�

different bids B
jk

= hb
jk

, b
jk

i, where |S| is the number

of items, |b
jk

| = m
pi , and b

jk

= cp

�

b
jk

, p
j

, ⌘
bjk ⇤
pj

�

. All bids created for program p
j

are XOR-constrained
bids. Moreover, each pair of bids B

j,k

, B
q,l

such that b
jk

\ b
ql

6= ; are also XOR-constrained.” Now the
team allocation for internship programs problem has a feasible solution if and only if BCAWDP with XOR
constraints has a solution.

Typically, the winner determination problem for combinatorial auctions can be cast and solved as a linear
program. Along the same lines, we propose how to solve the TAIPP by meas of LP in Sec 2.3. Before that,
the following section characterises the search space with which an algorithm solving the TAIPP must cope.

2.2.4 Characterising the search space

The purpose of this section is to characterise the search space defined by the TAIPP. This amounts to
quantifying the number of feasible team assignment functions in Gfeasible. For that, we start by splitting the
programs in P into k buckets of programs, where the programs in the same bucket require teams of the
same size. That is, we have b1, · · · , bk ✓ P buckets where b

i

\ b
j

= ;, 8i, j = 1, · · · , k and
S

k

i=1 bi = P .
For each bucket b

i

with |b
i

| = n
i

, it holds that m
p1 = m

p2 = · · · = m
pni

= m
i

for all p1, p2, · · · , pni 2 b
i

; and
m

i

6= m
j

, that characterise b
i

and b
j

respectively, for any i 6= j = 1, · · · , k. Next, we will distinguish three
cases when counting the number of feasible teams in Gfeasible:

3We remind the reader that these requirements are particular to our scenario of matching students to tasks. When the WeNet pilots’
scenarios get finalised and their diversity dimensions identified, we will adapt our algorithm to any new requirements that might pop up.
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- Case I :
P

p2P

m
p

=

P

k

i=1 mi

· |b
i

| = N , we have exactly as many students as required by all programs
in P . In this case, we seek for partition functions over P . The space of Gfeasible is N !Qk

i=1(mi!)bi
according

to Theorem 3.4.19 in [11].

- Case II :
P

p2P

m
p

=

P

k

i=1 mi

· |b
i

| < N , we have more students than the required ones by all
programs in P . Following the Example 3.4.20 in [11], we assume one more bucket b

k+1 containing
exactly one auxiliary program, which requires a team of size m

k+1 =

P

k

i=1 mi

· |b
i

| � N . Now there
are |Gfeasible| = N !

Qk
i=1(mi!)bi ·

�

N�
Pk

i=1 |bi|·mi

�

!
different feasible team assignment functions.

- Case III:
P

p2P

m
p

=

P

k

i=1 mi

· |b
i

| > N , we have less students than the required ones by all programs
in P . In this case, first we need to introduce cover(P, S) = {P 0 ⇢ P :

P

p2P

0 m
p

 N^ 6 9 p0 2 P � P 0
:

m
p

0  N �
P

p2P

0 m
p

} as the set that contains all the subsets of programs P 0 ⇢ P such that S, P 0

leads to Case I or Case II, and by adding any p 62 P 0 in p0 it will lead to Case III. The number of feasible
team assignment functions is:

|Gfeasible| =
X

P

02cover(P,S)

N !

Q

k

i=1(mi

!)

bi ·
�

N �
P

k

i=1 |bi| ·mi

�

!

where variables k, b1, · · · , bk and m1, · · · ,mk

changes according to P 0. The size of set cover(P, S)
depends on the total number of students, and the team sizes required by the programs in P .

Note that the number of feasible team assignment functions quickly grows with the number of programs
and students, hence leading to very large search spaces.

2.3 Solving The TAIPP as a linear program

In what follows we show how to solve the TAIPP in Definition 6 as an LP. First, for each time K ✓ S and
program p 2 P , we will consider a binary decision variable xp

K

. The value of xp

K

indicates whether team K is
assigned to program p or not as part of the optimal solution of the TAIPP. Then, solving the TAIPP amounts
to solving the following non-linear program:

max

Y

p2P

Y

k2Kp

⇣

cp

�

K, p, ⌘K ⇤
p

�

⌘

x

p
K

(2.8)

subject to:
X

K✓S

xp

K

·
K2Kp  1 8p 2 P (2.9a)

X

p2P

X

K✓S

xp

K

·
s2K

·
K2Kp  1 8s 2 S (2.9b)

xp

K

2 {0, 1} 8K ✓ S, p 2 P (2.9c)

Constraint 2.9a ensures that a program is allocated a single team. Constraint 2.9b ensures that any two
teams sharing some student cannot be assigned to programs at the same time. Notice that the objective
function (see Eq 2.8) is non-linear. Nevertheless, it is easy to linearise it by maximising the logarithm of
Q

p2P

Q

k2Kp

⇣

cp

�

K, p, ⌘K ⇤
p

�

⌘

x

p
K

. Thus, solving the non-linear program above is equivalent to solving the
following binary linear program:

max

X

p2P

X

K2Kp

xp

K

· log
⇣

1 + cp

�

K, p, ⌘K ⇤
p

�

⌘

(2.10)
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subject to: equations 2.9a, 2.9b, and 2.9c. Therefore, we can solve this LP and solve with the aid of an
off-the-shelf LP solver such as, for example, CPLEX, Gurobi, or GLPK. If given sufficient time, an LP solver
will return an optimal solution to the TAIPP.

At this point, it is worth mentioning that computing the objective function in 2.10 to build the LP requires
the pre-computation of the values of cp

�

K, p, ⌘K ⇤
p

�

, which amounts to solving an optimisation problem per
each pair of team and program. This is bound to lead to large linear programs as the number of students and
programs grow. Furthermore, an LP solver is a general-purpose solver that does not exploit the structure of
the problem. Thus, in the next section we introduce the TAIP algorithm, an anytime algorithm based on local
search that yields approximate solutions to the TAIPP. Unlike an LP solver, TAIPP is a specialised algorithm
does exploit the structure of TAIPP instances. Section 2.5 will show that TAIPP manages to outperform a
general-purpose LP solver.

2.4 A heuristic algorithm for TAIPP

The TAIP algorithm consists of two stages: (a) finding an initial feasible allocation of students to programs,
and (b) continuously improving the best allocation at hand by means of swaps between team members.

2.4.1 Initial team allocation

During this stage the algorithm finds an initial feasible team allocation. The algorithm sequentially picks a
team for each program, starting from the ‘hardest’ program to the ‘simplest’ one. Intuitively, ‘hard’ programs
are more selective, i.e., there are a few students that can cover it; as such, picking teams for the harder
programs first is easier as we have more options (students) available. In order to evaluate the hardness of a
program we will be using the notion of fuzzy entropy.

To begin with, we first evaluate the required competences from all programs, as to how hard is for the
students to cover them. Looking at the competence coverage metric, we can view it as a membership
function [14], i.e., a function that indicates in what degree a competence lies in a set of competences. Thus,
fuzzy entropy [10, 1] indicates the difficulty of finding students to cover a competence. However we need to
discern two extreme cases:

- all students possess competence c, i.e. cvg(c, C
s

) = 1 8s 2 S;

- no student can cover competence c, i.e. cvg(c, C
s

) = 0 8s 2 S.

Although, the above two cases result with the same fuzzy entropy (0), their intuitive interpretation is exactly
the opposite. In the former case, finding a student for covering this competence within a team it is trivial
since everyone can cover it. In the latter case, finding a student for covering this competence within a team
it is trivial since no-one can cover it. Thus, in our definition of competence hardness we exploit the notion of
fuzzy entropy, but we also embrace the intuitive interpretations above. Formally:

Definition 7 (Competence Hardness). Given a set of students S, the hardness of a competence c is defined
as

h(c, S) = �K
X

s2S

H
�

cvg(c, C
s

)

�

(2.11)

where K = 1/|S| is a normalization factor,

H(x) =

(

H(x) +H(1� x) if x � 0.5

4 ·H(0.5)�H(x)�H(1� x) otherwise
,

and H(x) = x · log(x).

The hardness of a competence c coincides with its fuzzy entropy when for all students the competence
coverage is greater than 0.5. If for all students the competence coverage is less than 0.5 the competence
hardness is the constant 4 · 0.5 · log(0.5) minus the fuzzy entropy. The constant 4 · 0.5 · log(0.5) derives
from the fuzzy entropy of point 0.5: coverage 0.5 indicates that all students are neither good nor bad for
this competence, as such hardness in point 0.5 shall be the median, thus the maximum of the competence
hardness is 2 ·

�

0.5 log(0.5)+(1�0.5) log(1�0.5)
�

= 2 ·2 ·0.5 log(0.5). Graphically, the competence hardness
is shown in Fig 2.1.
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Figure 2.1: Competence hardness.

The degree of hardness of a program is determined by the available set of students’ difficulty for covering
the program’s competencies. We remind the reader that each required competence is accompanied by an
importance weight (Sec 2.2.1). Thus, consider a program where its most important competence c

important

(i.e., the competence with the highest w
p

(c)) is very difficult to be covered h(c
important

, S) ' 4 ·H(0.5), then
this program is extremely hard. On the other hand, if a specific competence c is somewhat difficult to be
covered (h(c

important

, S)! 4 ·H(0.5)), but it is not very important (w
p

(c)! 0), then the program is not that
hard.

Definition 8 (Program Hardness). Given a set of students, the hardness of a program p is defined as
the aggregation of the hardness for the competences in the program weighted by the importance of each
competence: h(p, S) = W ·

P

c2Cp

1
h(c,S)+✏

·w
p

(c), where W =

1P
c2Cp

wp(c)
is a normalization factor, and ✏ is

a small positive constant.

In words, the more important and the more difficult a competence is to be covered, the more difficult
is to find students with high competence proximity for the program, consequently the harder the program
is considered to be. Note that both w

p

(c) and h(c) are non-negative, so the hardness of one competence
cannot be counteracted by the non-hardness of another within the same program.

Algorithm 1: Initial Team Allocation
input : Students S, programs P , (optionally) sorting order order for P
output : team assignment function g

1 V
p

 
S

p2P

C
p

;
2 for c 2 V

p

do hc[c] h(c, S);
3 for p 2 P do hp[p] h(p, S);
4 sort P in descending order wrt hp;
5 while P 6= ; do

6 p pop first from P ;
7 if |S| � m

p

and hp[p] < 1 :

8 sort S maximizing coverage in benches of |C
p

|;
/* assign team to program */

9 g(p) m
p

first students in S;
10 S  S \ g(p);
11 update values in hc;
12 if |S| < 1 : break;
13 return g;

© 2019–2022 WENET Page 23 of 29



WENET | D5.1: WeNet’s Diversity-Aware Interactions I

2.4.2 Improving team allocation

In the second stage we perform a number of random ‘movements’, until convergence to a local or global
maximum. The second stage starts with the team assignment produced in the first stage. Thereafter, we
iteratively improve the current team assignment either (i) by employing crossovers of students between
two programs, and/or (ii) by swapping assigned students with available ones if they exist. Specifically,
following Algorithm 2 within an iteration we randomly pick two programs (line 4) and attempt to improve
the competence proximity of the pair by exhaustively searching of all possible crossovers of the students
assigned to these programs (line 7). However, in order not to computationally overload our algorithm with
repetitive exhaustive searches, we perform it only if the following two conditions hold:

1. the two programs share similar competencies; and

2. some student in one of the teams improves the coverage of some competence of the other team.

In order to evaluate if two programs share similar competencies we exploit the Hausdorff distance [6]. The
Hausdorff distance between the required competencies of two programs p

k

and p
l

is defined as:

dist(C
p1 , Cp2) = max

�

min

c2Cp1

{cvg(c, C
p2)}, min

c2Cp2

{cvg(c, C
p1)}

 

.

The above two conditions encode the potentiality of finding an improvement for these two programs, and
whether it is worth performimg an exhaustive search. In the exhaustive search, given the students g(p

k

) [
g(p

l

) we produce all possible partitions that contain two teams of sizes m
pk and m

pl . For each of these
partitions we compute the competence proximity of the pair of programs, and yield with the optimum one,
i.e., with the partition that achieves the greater competence proximity.

In case we did not achieved any improvements from the previous step and there are available students,
i.e. student that have not been assigned to any program, we attempt to swap assigned students with
available ones (line 9). That is, we randomly pick a student from either of the two programs, and try to
randomly swap them with a student in S

available

. If we achieve an improvement we keep this alteration,
otherwise we repeat this process for a fixed number of attempts. In case we succeeded to imporove the
competence proximity of the pair, we update the team assignement g, the set of availble students S

available

,
and the current overall competence proximity (lines 10-15).

In order to overcome the possibility of a series of unsuccessful attempts between random programs, we
force a more ‘systematic’ search, which we call local search, on the programs. This local search is performed
after a constant number of iterations (line 16). In the local search (line 17) we go through all programs in P ,
swap all members, and check whether some swap improves the overall competence proximity–in the swaps
we consider all students: both assigned and available.

Note that Algorithm 2 is anytime algorithm that can yield a result after any number of iterations indicated
by the user. However, in its generality, we adopt a notion of convergence in order to terminate the algorithm.
That is, we terminate the algorithm (line 3):

- after a number of iterations without no improvements; or

- if we reach an overall competence proximity close to 1.

Note that we added the latter termination condition in order to avoid unnecessary iterations until conver-
gence, due to the fact that the maximum value the overall competence proximity can reach is 1. We remind
the reader that the competence proximity is the Nash product of the individual competence proximity of the
teams to their assigned program (Eq 2.8), and each individual competence proximity lies in [0, 1] (Def 4).
However, we should make clear that the overall competence proximity does not always reach 1, but that it
can never exceed 1.

2.5 Empirical analysis

The purpose of this section is to empirically evaluate the TAIP algorithm along four directions:

• the quality of the solutions that it produces in terms of optimality;
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Algorithm 2: Improve Team Allocation
input : Students S, programs P , team assignment g
output : improved team assignment g

1 Savailable = S \
S

p2P

g(p);
2 current cp =

Q

p2P

cp

�

g(p), p
�

;
3 while non improved and 1� current cp > " do

4 p
k

, p
l

 randomly select two programs from P;
5 pair cp = cp

�

g(p
k

), p
k

�

· cp
�

g(p
l

), p
l

�

;
6 if potentiality(p1, p2, g) :

7 new cp,K
k

,K
l

 exhaustiveSearch(p1, p2, g);
8 else :

9 new cp,K
k

,K
l

 localSwaps(p1, p2, g, Savailable);
10 if new cp > pair cp :

11 g(p
k

) K
k

;
12 g(p

l

) K
l

;
13 Savailable  S \

S

p2P

g(p);
14 current cp current cp · new cp

pair cp ;
15 pair cp new cp;
16 if time for local search :

17 g, Savailable, current cp localSearch(P, g, Savailable);
18 return g;

• the quality of the solutions produced by the initial stage;

• the time required by TAIP to produce optimal solutions with respect to CPLEX, an off-the-shelf linear
programming solver; and

• the time required by TAIP to yield optimal solutions as the number of students and programs grow.

Overall, our results indicate that TAIP significantly outperforms CPLEX, and hence it is the algorithm of
choice to solve the Team Allocation for Internship Programs Problem introduced in this chapter. Next, in Sec
2.5.1 we describe the settings employed in our experiments, whereas Sec 2.5.2 dissects our results.

2.5.1 Empirical settings

For our experimental evaluation, we were looking for ways to define competences in universities, and as
such, we used an existing competence ontology provided by Fondazione Bruno Kessler (https://www.fbk.eu/en/);
and generated synthetic data in the following way:

Internship program generation For each program p

1. select the required team size m
p

⇠ U{1, 3}

2. select the number of required competences |C
p

| ⇠ U{2, 5}

3. randomly choose |C
p

| competences from the ontology

4. the required level function is set to l
p

(c) = 1, 8 c 2 C
p

5. the weight function is w
p

(c) = N
�

µ = U(0, 1),� = U(0.01, 0.1)
�

bounded in (0, 1] for all c 2 C
p

.
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Figure 2.2: Solution quality achieved by TAIP along time.

Student generation For each program p

1. generate m
p

new students such that for each student s: there are competences c 2 C
p

and c0 2 C
s

such that c0 is (i) identical to c; or (ii) a child-node of c in the ontology; uniformly selected among the
options.

With these generators we constructed 60 different TAIPP instances, which are shown in Table 2.2. We
solve each problem instance with both TAIP and the IBM CPlex linear programming (LP) solver. The exper-
iments were performed on a PC with Intel Core i7 (8th Gen) CPU, 8 cores, and 8Gib RAM. Moreover, we
employed IBM ILOG CPLEX V12.10.0. For all implementations we used Python3.7.

2.5.2 Results

Quality analysis. Using the optimal solutions yielded by CPLEX as an anchor, we can evaluate the quality
of the solutions computed by the TAIP algorithm. Notice that for all problem instances, TAIP reaches the
optimal solution. More precisely, for every problem instance, TAIP achieved a solution whose value, in terms
of competence proximity, is the same as the value of the optimal solution computed by CPLEX. Fig 2.2
shows the average quality ratio of TAIPP with respect to CPLEX along time for the problem instances in
Table 2.2. We calculate the quality ratio by dividing the competence proximity computed by TAIP by the
optimal value computed by CPLEX, and it is depicted as a percentage (%).
Runtime analysis. The greatest advantage of TAIP is that it is way much faster than CPLEX. As shown
in Fig 2.3 TAIP reaches optimality in less than half of the time required by CPLEX. Specifically, for problem
instances with 10 programs, TAIP requires on average ⇠ 40% of the time CPLEX needs, i.e., is ⇠ 60%

faster. As to problem instances with 15 programs, TAIP requires on average ⇠ 45% of the time employed by
CPLEX (⇠ 55% faster). Finally, for problem instances with 20 programs, TAIP requires on average ⇠ 29%

of the time spent by CPLEX (⇠ 71% faster). Therefore, the larger the size of the problem instances, the
larger the benefits for TAIP with respect to CPLEX. Here we should note that the time consuming task for
CPLEX is the building of the LP encoding the problem, while solving the actual problem is done in seconds.
This indicates that the problem instances under investigation are rather large than hard: as the number of
programs increases, so does the number of students, resulting in large linear programs.
Anytime analysis. Last but not least we present our results on the anytime behavior of TAIP, as shown
in Fig 2.4. We observe that after completing the initial stage described in Sec 2.4.1, the solution quality
produced by TAIP reaches 80%, 70%, and 65% of the optimal solution, for problem instances with 10,15
and 20 programs respectively. Furthermore, TAIP reaches quality 80% in 0.001⇥ t

CPLEX

for 10 programs,
70% in 0.025 ⇥ t

CPLEX

for 15 programs, and 65% in 0.0002 ⇥ t
CPLEX

for 20 programs, where t
CPLEX

is
the time CPLEX needs to compute the optimal solution. Moreover, in all investigated settings we reached
80% quality in less than 20% of the time CPLEX needs: 0.1%, 20%, and 13.5% of CPLEX time for 10,15,
and 20 programs.
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(a) 10 programs (b) 15 programs

(c) 20 programs

Figure 2.3: Average Competence Proximity vs Time

(a) 10 programs (b) 15 programs

(c) 20 programs

Figure 2.4: Anytime Behavior
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Dataset 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Average
N=#Students 18 20 21 19 22 19 24 18 19 20 23 20 18 19 25 21 25 20 17 13 20.5

(a) Family of datasets with 10 programs
Dataset 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Average

N=#Students 23 33 32 29 33 40 31 32 28 25 27 31 29 28 32 29 29 32 34 29 30.6

(b) Family of datasets with 15 programs
Dataset 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Average

N=#Students 44 45 44 45 38 42 42 47 41 44 37 36 42 37 47 32 40 37 44 43 41.35

(c) Family of datasets with 20 programs

Table 2.2: Synthetic problem instances.

2.6 Conclusions and future work

As illustrated in the opening of this chapter, how to group people cannot be conducted in a generic way,
independent of the goal of the team. As such, any team formation algorithm is influenced by the expected
goal of the team. Currently, the WeNet pilot scenarios are still being designed, the diversity dimensions are
being laid out, and the exact goals of teams are yet to be finalised. As soon as these details are agreed
upon, the plan will be to revisit our proposed algorithm to take into consideration the goal of the agreed upon
pilot scenarios and the possible diversity dimensions that are relevant for team formation.

Nevertheless, for now, this chapter has formally defined the problem of allocating teams to tasks. We first
studied the problem’s complexity and characterised its search space.Thereafter, we provided an encoding
to optimally solve the TAIPP by means of linear programming. Then, we proposed a novel, heuristic anytime
algorithm, TAIP. Finally, we conducted a systematic comparison of TAIP versus the CPLEX LP solver when
solving TAIPP problem instances. Our experimental evaluation showed that TAIP outperforms CPLEX in
time, mainly because of the extremely large input that the latter requires. Moreover, TAIP always managed
to reach the optimal solution for the problem instances under investigation. Specifically TAIP converged to
the optimal in less than 40% of the time required by CPLEX, and achieved a quality of 80% in less than 20%
of the time required by CPLEX.
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